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1 Introduction

Handwritten digit recognition (HDR) is the rudimentary principal behind today’s generalised optical character recogni-
tion. HDR has been applied throughout numerous domains from the sorting of mail [1], interpreting numerically rated
survey responses and reading student candidate numbers on examination scripts [2].

Whilst HDR has already been extensively analysed, handwriting quirks transition over time [3]. This means a
constant ongoing analysis is required to ensure accuracy rates in HDR keep pace with a technologically demanding
world.

This paper aims to critically evaluate two supervised learning techniques, Multi-Layer Perceptrons and Convolu-
tional Neural Nets, to classify an image into one of the ten numerical digits. We will conduct a systematic hyper-
parameter grid search on both forms of neural networks in order to ascertain our leading algorithm.

The remainder of this paper is structured as follows: Section 1 outlines the two chosen supervised learning
techniques, Section 2 discloses the finer points of our dataset, Section 3 illustrates the methods used when imple-
menting our algorithms, Section 4 evaluates our results and provides a detailed comparison, and Section 5 outlines
our significant concluding points and objectives for future work.

1.1 Multi-Layer Perceptron

A multi-layer perceptron (MLP) is a type of feed-
forward artificial neural network (ANN). The MLP
consists of three types layers; an input layer, a hid-
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Figure 1: Overview of MLP Structure [4] cult.
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1.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks can be seen as a special kind of MLP and are a commonly used architecture for
computer vision tasks. Originally proposed by Lecun, Bottou, Bengio, et al. [6], they have outperformed all previously
existing techniques on popular image datasets such as ImageNet and CIFAR10 [7]. A basic CNN for an image
classification task, usually consists of an input layer that takes tensors of size C'x H x W as input, where C' =number of
channels, H =height, W =width, a middle block that includes successive convolutional layers followed by max pooling
layers, and one or more fully connected layers. A convolutional layer consists of D convolutions (aka convolutional
layer neurons) where a kernel of size C' x h x w is applied to the input tensor and consequently outputs D feature
maps of size (H — h+ 1) x (W —w + 1) as depicted in Figure 2. Note that the same kernel per channel is swiped
across the input rows and columns, this constraint is also referred to as weight-sharing. A max-pooling layer reduces
(down-samples) the higher dimensional input. Figure 3 illustrates a 2 x 2 max pool operations applied on a 4 x 4
input. A fully connected layer is connected to all neurons in the previous layer.



One of the main advantages of CNN in comparison to MLP is the reduction in the number of free parameters
through the aforementioned weight-sharing. Reduced parameters in turn reduce the computational costs and improve
the generalization ability [6]. Weight-sharing also enables parallelization to a larger degree than it is the case for MLP.
Another advantage is it’s superior performance on image classification tasks compared to MLP.

A disadvantage that both CNN and MLP have in common, is that they do not encode the position and orientation
of the objects in the image. A recent paper by Sabour, Frosst, and Hinton [8] tries to address this issue by introducing
a novel capsule architecture.
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Figure 2: lllustration of a convolutional layer, from [9] Figure 3: lllustration of a max pooling layer, from [10]
2 Dataset

The data used for our experiments is the MNIST dataset [6]. This
is a large dataset consisting of 70,000 images of individually hand-
written digits sampled from American Census Bureau employees . - : - s
and American high school students; 25 of which can be seen in[Fig- E E]
The digits were then normalised to fit in 28x28 pixel image 5 2 o U 0
and anti-aliased; with the consequence of introducing greyscale. m

The format of our data is a 784x70000 matrix; each column rep-

6 3 4 1 3
resents a digit and every 28 rows a column of pixel values in our = E3 A

image. We also had a 1x70000 vector of ground truth labels corre-

sponding to each image.
2.1 Initial Data Analysis | =

Initial analysis of the data shows that we have an unequal repre-
sentation of each digit (see [Figure 5), this can result in class bias.
One solution to address imbalanced classes is to reduce the num-
ber of samples from each class to equal the number of samples from
the least sampled class. We also calculated heat-maps,
displaying the mean pixel value for each digit to identify if certain
groups of pixel values were strongly associated to specific digits.

Figure 4: Greyscale Display of 25 Image Files
and Their Associated Ground Truths

3 Methods

This section outlines our choice of training methodology, model architectures and which hyper-parameters will be
optimized in the model selection step. Given the discussion in Section 1, our hypothesis is that the best convolutional
neural network will outperform the best Multi-Layer Perceptron model in terms of accuracy.

3.1 Methodology

The dataset was split into a training set, consisting of 50,000 images, a validation set consisting of 10,000 images
and a hold-out test set consisting of 10,000 images. The 10,000 test set images are predefined by the authors of the
dataset to enable performance comparison amongst different techniques.
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3.2 Hyper-Parameters and Architecture Used for MLP

In order to efficiently compare a considerable number of MLPs we performed a grid search on the following hyper-
parameters; the learning rate, LR = {0.001,0.01,0.1}, the number of hidden layers, HL = {1, 2, 3,4}, and the number
of neurons in each hidden layer, NN = {10, 50, 100, 250, 500}. We chose to alter these parameters with the objective
of improving generalisability and performance whilst considering the complexity of the network.

Originally the MLP grid search was completed using gradient descent with momentum (GDM) as the training
function but we soon identified a significant variation between the accuracy of our preliminary results and the results
of the grid search. On average the accuracy of networks trained with GDM compared to scaled conjugate gradient
backpropagation (SCG) was 17.5% and 94.9% respectively. It was therefore decided that we would use SCG as our
training function.

During training, the initial weights of the MLPs are randomly assigned, the cross-entropy error of the network is
then calculated, SCG proceeds to adjust the weights (a form of backpropagation) and recalculate the error. This
process was set to repeat for a maximum of 1000 epochs, or until the validation accuracy had not improved for 6
validations.

3.3 Hyper-Parameters and Architecture Used for CNN

In order to avoid high computational costs and over complexity that can arise with very deep networks and larger
layers, we decided to keep the architecture relatively simple. We took inspiration from the VGG architecture introduced
by Simonyan and Zisserman [11], where after each block the number of convolutions is increased by a factor of two,
while at the same time the spatial resolution is reduced by half through a 2 x 2 max-pooling operation, creating a
"bipyramidal” effect. The resulting first hyper-parameter, referred to as NN in Tables 1-4, determines therefore the
number of 3 x 3 convolutions in the first convolution layer. The second hyper-parameter is the learning rate. Stride
and paddings were fixed to 1 for all convolutional layers, similarly the max-pooling layers were set to use a stride of 2.
We conducted a grid search for three model architectures:

1. Three middle blocks, each consisting of a convolutional layer, a ReLu and max pool layer, and one final fully
connected layer of size 10 (Table [f).

2. Four middle blocks, each consisting of a convolutional layer, a ReLu and max pool layer, and one final fully
connected layer of size 10 (Table 2).

3. Three middle blocks, each consisting of a convolutional layer, a ReLu and max pool layer, and two final fully
connected layer of size 100 and 10 (Table [3).

The following sets of hyperparameter were evaluated: NN = {8,16,24,32} and LR = {0.1,0.01,0.001}. All models
were trained with Stochastic Gradient Descent with Momentum. The momentum and mini-batch size were not part of
the grid search and were set to 0.08 and and 128 respectively. Validation accuracy was evaluated every 50 iterations
and the training process was stopped if the validation accuracy has not improved for at least 5 validations.

4 Results, Findings and Evaluation

CNN model training was conducted on the "seaford” gpu server instance, equipped with a NVIDIA Quadro K2000,
of City, University of London. The combined training time was approximately 40 minutes. Grid search and training



Table 1: Grid search for CNN with 3 convolutional Table 2: Grid search for CNN with 4 convolutional

layer and one fully connected layer layer and one fully connected layer
LR NN lter. Epochs  Time Batch Val. LR NN lter. Epochs  Time Batch Val.
Acc.% Acc.% Acc.% Acc.%
0.1 8 900 3 30.58 96.88 97.98 0.1 8 850 3 31.44 100.00 98.71
0.1 16 1900 6 58.60 99.22 98.29 0.1 16 1000 3 38.62 99.22 98.66
0.1 24 1400 4 5915 9766  97.53 0.1 24 1600 5 86.34  100.00 98.83
0.1 32 2200 7 12053 97.66  97.90 0.1 32 1950 6 136.30 99.22  98.72
0.01 8 1850 6 61.65 99.22 98.66 0.01 8 1450 5 42.78 99.22 98.94
0.01 16 1050 3 32.88 98.44 98.84 0.01 16 1500 5 47.89 100.00 99.09
0.01 24 1050 3 44.86 98.44 98.84 0.01 24 850 3 32.10 99.22 98.89
001 32 700 2 3792  100.00 98.67 001 32 1200 4 66.24  100.00 99.09
0.001 8 2250 7 73.45 97.66 98.41 0.001 8 1600 5 47.47 98.44 98.70
0.001 16 2700 8 83.21 98.44 98.75 0.001 16 1850 6 68.55 100.00 98.93
0.001 24 1550 5 65.53 98.44 98.62 0.001 24 1450 5 89.56 99.22 98.89
0.001 32 2150 7 115.36 100.00 98.67 0.001 32 2200 7 152.02 99.22 99.01

Table 3: Grid search for CNN with 3 convolutional

layer and two fully connected layer
Table 4: Test-set results of selected CNN architec-

LR NN lter. Epochs  Time Batch Val. tures
Acc.%  Acc.%

31.33 98.44 98.72

0.1 8 950

3
0.1 16 650 2 2198 9922 9861 E:;e"r Egyers NN LR et
0.1 24 700 2 31.11 99.22 98.53 :
0.1 32 700 2 38.80 96.88 98.72 3 1 24 0.01 98.96
0.01 8 1450 4 47.68 99.22 98.70 3 1 16 0.01 99.06
0.01 16 1600 5 54.44 100.00 98.88 4 1 32 0.01 99.17
0.01 24 1150 4 61.56 100.00 98.94 4 1 16 0.01 99.21
0.01 32 1350 4 73.91 99.22 98.98 3 2 24 0.01 99.01
0.001 8 2000 6 64.98 99.22 98.00 3 2 32 0.01 99.03
0.001 16 3000 9 99.52 98.44 98.61
0.001 24 2000 6 87.53 100.00 98.45
0.001 32 2250 7 127.00 99.22 98.66
Hidden
Inputs feature maps feature maps feature maps feature maps unlts Dutputs
l@28x28 16@15x15 32@8x8 6d@5x5 128@3x3
Convolution Conwvalution Convolution Convolution Fully con. softmax
3x3 kernel 3x3 kernel 3x3 kernel 3x3 kernel
Max-pooling Max-pooling Max-pooling Max-poeling
2x2 2x2 2x2 2x2

Figure 7: Best performing CNN architecture.

for the evaluated MLP models was conducted on a 16 worker parallel pool (AMD Ryzen 7 1700x CPU) and took
approximately 10 hours.

4.1 Model Selection
4.1.1 CNN

Overall all tested CNN variations performed very well with validation accuracies above 97.53% across the board. An
apparent sweet-spot for the learning rate hyper-parameter was found to be 0.01. The ideal number of feature maps
in the first layer (NN) varied depending on the architecture. The best validation accuracies for model architecture
1 resulted from NN = 16 and NN = 32, for model architecture 2 from NN = 16 and NN = 32 and for model
architecture 3 from NN = 24 and NN = 32. The two best performing configurations on the training-set were
then evaluated on the hold-out test-set. The best performing architecture is model architecture 2 with NN = 16 and
LR = 0.01, resulting in a test-set accuracy of 99.21% as shown in Table[d] The winning CNN architecture is displayed
in detail in Figure 7. Given the relative simplicity of our architecture, the results are surprisingly good, the current
state-of-the art result on this dataset is 99.75 % [8].

412 MLP

The results of our MLP grid search reveal a selection of trends amongst our hyperparameters. Firstly, it can be
seen from that as the number of neurons increase the accuracy drastically increases but the accuracy



then begins to plateau after 100 neurons per layer. When we compare the learning rate to the number of neurons
we see a very weak correlation in the accuracy increasing as the learning rate decreases. Further
comparing the learning rate with the number of hidden layers makes inferring a general trend difficult as results are
sporadic. Finally, the increase from one hidden layer to two hidden layers accounts for the greatest
accuracy increase but the accuracy does continue to increase as we increase the number of hidden layers albeit at a
slower rate.

Considering the results of our best performing MLP architectures (Figure 9), although it is clear in terms of ac-
curacy which network performs best, it is important to take a holistic approach to model selection. For a 0.03%
decrease in accuracy we can decrease our training time by a factor of five whilst simplifying our model by halving the
NN, decreasing the number of HL by 1 and increasing the learning rate.

Figure 8: Top 20 MLP Grid Search Results

NN HL LR Time (mins)  Epochs  Train. Acc.  Val. Acc.
500 3 0.1 56 165 0.9962 0.9768
500 3 0.001 54 161 0.9980 0.9759
250 4 0.001 10 140 0.9942 0.9744
250 2 0.001 20 104 0.9925 0.9744
500 3 0.01 49 145 0.9953 0.9740
250 2 0.1 10 104 0.9926 0.9733
250 4 0.01 17 117 0.9970 0.9731
500 4 0.001 71 159 0.9929 0.9729
250 3 0.001 13 113 0.9886 0.9723
500 2 0.1 9 121 0.9920 0.9722
500 1 0.1 16 130 0.9990 0.9722
250 2 0.01 28 95 0.9902 0.9722
500 1 0.01 14 114 0.9973 0.9721
500 1 0.001 15 123 0.9968 0.9718
250 1 0.001 6 98 0.9934 0.9717
250 1 0.01 7 101 0.9940 0.9712
250 4 0.1 18 129 0.9921 0.9710
100 3 0.01 3 96 0.9894 0.9708
250 1 0.1 3 109 0.9946 0.9707
100 2 0.1 7 86 0.9873 0.9707

Figure 9: Test-set Results of Selected MLP Architectures

NN HL LR Time (mins)  Epochs  Test Acc.

500 3 0.001 54 161 0.9753
250 2 0.1 10 104 0.9750
500 1 0001 15 123 0.9745
250 1 0.1 7 109 0.9736
500 3 0.1 56 165 0.9735
500 3 001 49 145 0.9734 Figure 11: MLP NN and HL Versus Accuracy

4.2 Comparison of Algorithms

Both our MLP and CNN models performed well with test-set accuracies of 97.53% and 99.21% respectively. Interest-
ingly, the worst performing convolution architecture on the validation set, with 3 convolutional layers, 24 feature maps
in the first layer, a learning rate of 0.1 and a validation accuracy of 97.53% , is still better than 18 out of the top 20
MLP architectures evaluated on the validation dataset.

"Going deeper”, that is increasing the number of hidden layers, resulted in an increased test-set performance for
the evaluated CNN and MLP configurations. As outlined in Section an increase in the number of neurons per
layer led to an increase in validation accuracy, with four out of the six MLP architectures evaluated on the test-set
having the highest number of neurons per layer that was considered during the grid search. The same can not be
said for the CNN models, as both architecture variation 1 and 2 achieved the best test-set results with the lowest
number of neurons in the first convolutional layer considered during the grid search (16).

Both algorithms were found to be sensitive to the learning rate. Whereas for CNN an optimal learning rate of 0.01 was
found for all three tested architectures, for MLP the optimal learning rate varied depending on the number of hidden
layers and neurons per layer.

When scrutinising false negatives in the MLP model we notice a recurring ’pairing’ pattern between different digits.
This can be interpreted from the confusion matrix (Figure 12). This pairing pattern is the result of a target class
being identified as another class and vice versa; such pairs that exist include (3,5) and (4,9). This phenomena was
anticipated as when comparing the heat-maps we can see significant correlations between the hotspots
in these digits. When we compare this observation with the results from the CNN (Figure [13) we note that the (3,5)
pairing is less prominent, illustrating the CNN architectures superior feature selection techniques. Like for the MLP,
the (4,9) pair is also the most commonly misclassified pair for the CNN, albeit to a far lesser degree with only 6
misclassification’s vs 46 misclassification’s for the MLP model.
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5 Conclusion

Our study successfully compares MLP and CNN architectures for the purpose of digit recognition, with both re-
porting a high degree of accuracy. It is clear from the comparisons exhibited that the CNN is the superior of the two
architectures for digit recognition. The reduction in the number of weights to train through weight-sharing in CNN, fur-
ther decreases their computational cost and improves their generalization ability. While our results confirm the latter,
we are not able to confirm the former statement since training was conducted on different hardware. We therefore
suggest running the training and evaluation on identical machines in future work. Another important finding is that an
exceedingly more complex MLP is required to mimic the accuracy rates of a much simpler CNN.

We have also exemplified how confusion matrices can be an insightful resource for multi-class classification
problems as they provide an intuitive visual for identifying any erroneous classifications.

Whilst our study was successful and highlighted some important trends and results, there is still additional work
that could be pursued. Our study was focused on comparing the accuracy of the two architecture types but in real life
applications, of computer vision, time constraints are often a significant factor in model selection. Another comparison
technique we wished to employ was the creation of a set of digits, containing noisy pixels based on our heat-map
information, to identify which model performed better with a set of prefabricated digits. For the MLP we considered
only a fixed number of fully connected layers with an identical number of neurons. We believe the MLP could be
further refined by further investigating the optimal number of neurons and varying the number of neurons across the
hidden layers. As previously briefly discussed, we noticed a radical variation when altering the training function of our
MLP model and this is something that could be explored further. In regards to the CNN architectures we would be
interested in experimenting with even deeper network architectures to explore if performance will eventually plateau
or degenerate and at what point this might take place.
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